JSTと金沢大、ナノロッドシートを用いた高効率有機太陽電池を開発

 科学技術振興機構(JST)は、同機構課題達成型基礎研究の一環として、金沢大学 理工研究域附属 サステナブルエネルギー研究センターの當摩(タイマ) 哲也 准教授らが、有機薄膜太陽電池で既存のバルクへテロ構造を越える新しい構造を開発し高効率化に成功しましたと発表した。

 有機薄膜太陽電池は、光が当たると電子を放出するドナー材料と、放出された電子を受け取って電極まで運ぶアクセプター材料の2種類の半導体材料で構成されている。
 近年、それらを単純積層するのではなく、2種類の材料を混合し、接合界面の増加によって、効率的に電荷分離を起こす「バルクヘテロ構造」が開発され、変換効率の大幅な向上が図られている。
 ところが、この構造も万能ではなく、半導体材料によっては分子同士が重なり合ってしまう凝集が起こるなど適応できないものがあり、また混合層の作製には手間とコストがかかるという実用化に向けた課題を抱えている。

 今回、研究者らは、バルクヘテロ構造を用いずに、これと同等以上の効率が得られる新しい構造の創出に挑戦した。まず、デバイスの基板上に斜め蒸着を用いて、CuI(ヨウ化銅)をナノメートルサイズ(ナノは10億分の1)の棒状粒子(ナノロッド)の形で散りばめた、山谷構造を持つシートを形成し、その上に、ドナー材料の亜鉛フタロシアニン(Pc)とアクセプター材料フラーレン(C60)を単純積層すると、それらもナノロッドの山谷構造に合わせて成長するため、平坦な基板に比べて結晶性は高くなり、2つの材料間の接触界面も増加する。これは、ナノロッドの作製には、高価な平坦透明電極基板よりも、安価で表面が荒れた基板が適するというコスト面の有用性を示唆している。
 
 さらに、研究者らがこれまでに発見したヨウ化銅と亜鉛Pcの相互作用による分子の配向制御によって、光吸収が増加しており、それらの相乗効果の結果、ナノロッドシートを用いた新構造太陽電池の効率は、単純積層型に比べて3倍の値(4.1%)を示し、従来のバルクヘテロ太陽電池を越えるものであることが確認された。

 これまで有機太陽電池効率化の唯一の選択肢であったバルクヘテロ構造に代わる、材料を選ばず、簡便・安価に作製できる新デバイス構造が開発され、このナノロッドシートは、亜鉛Pcに限らず、他の半導体でも効率向上が確認されており、有機太陽電池全般への応用が期待できる。
 同研究の要素技術は、すでに国内で特許出願されており、今後、企業などとの共同研究によって、早期の実用化の加速を目指していく。

 同研究成果は米国化学会誌「NANO LETTERS」のオンライン版で近く公開されるとのこと。